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ABSTRACT
Purpose The formalin-induced rat model of nociception involves
moderate continuous pain. Formalin-induced pain results in a
typical repetitive flinching behaviour, which displays a biphasic
pattern characterised by peaks of pain. Here we described the
time course of pain response and the analgesic effect of
gabapentin using a semi-mechanistic modelling approach.
Methods Male Sprague-Dawley rats received gabapentin (10–
100 mg/kg) or placebo 1 h prior to the formalin injection, as per
standard protocol. A reduction in the frequency of the second
peak of flinching was used as a behavioural measure of
gabapentin-mediated anti-nociception. The flinching response
was modelled using a mono-exponential function to characterise
the first peak and an indirect response model with a time variant
synthesis rate for the second. PKPD modelling was performed
using a population approach in NONMEM v.7.1.2.
Results The time course of the biphasic response was adequate-
ly described by the proposed model, which included separate
expressions for each phase. Gabapentin was found to reversibly
decrease, but not suppress the flinching frequency of the second
response peak only. The mean IC50 estimate was 7,510 ng/ml,
with relative standard error (RSE%) of 40%.

Conclusions A compartmental, semi-mechanistic model pro-
vides the basis for further understanding of the formalin-
induced flinching response and consequently to better charac-
terisation of the properties of gabapentin, such as the potency
in individual animals. Moreover, despite high exposure levels,
model predictions show that gabapentin does not completely
suppress behavioural response in the formalin-induced pain
model.
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ABBREVIATIONS
CI confidence interval
COX-2 cyclo-oxygenase 2
CV coefficient of variation
GABA γ-amino butyric acid
IIV inter-individual variability
MED median effective dose
MOFV minimum objective function value
NK1 neuroenkephalin 1
NMDA N-methyl d -aspartate
PKPD pharmacokinetics and pharmacodynamics
RSE relative standard error
VPC visual predictive check

INTRODUCTION

Ideally, the evaluation of the efficacy of novel treatments for
neuropathic pain should be based on pre-clinical models that
mimic not only the symptoms of disease, but also consider the
substrates underlying the pathophysiology of nociception in
humans, i.e., show construct validity (1). Nevertheless, most
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behavioural models of pain rely on withdrawal responses to
evoked pain, which reflect sensory perception and conse-
quently one’s ability to discriminate its intensity, localisation
and modality (2,3). As such, these measures ignore other
features of human pain (4).

Regardless of the potential limitations mentioned above,
the formalin induced pain (FIP) model is a well-accepted
screening test. The method comprises moderate, continuous
pain due to tissue injury following injection of formalin. In the
FIP model, the observed behaviour in response to a painful
stimulus, assessed as flinching frequency, is used as a measure
of efficacy (2,5,6). More specifically, the response is described
by a biphasic profile, which corresponds to the processes
underlying peripheral and central sensitisation. In addition,
this behaviour is thought to reflect both the sensory and
emotional aspects of pain (7,8). From a mechanistic perspec-
tive, the presence of common elements of human pain behav-
iour in the FIP model makes it possibly one of the most
predictive models among the available experimental models
of acute pain. These properties have also made the FIP model
an appealing tool for the screening of compounds showing
potential central anti-nociceptive activity (6,9). In fact, various
compounds have been found to affect flinching behaviour
(e.g., indomethacin and Na+ channel blockers), as assessed
by the inhibition of the second pain peak (2,10).

In the current investigation, we evaluate the pharmacokinetic-
pharmacodynamic (PKPD) properties of gabapentin in the FIP
model. Gabapentin is believed to act via antagonism of voltage
gated Ca++ channels in afferent neurons, thereby indirectly
modulating GABA activity (11). It has been shown to affect the
amplitude of the second pain peak, whilst leaving the other
components of the pain response largely unaffected (12).

Despite the widespread use of gabapentin as a reference
compound in preclinical models, no quantitative methods
have been implemented so far that allow discrimination be-
tween pharmacological and biological system properties, and
consequently provide a more consistent ranking of candidate
molecules. The availability of PKPD relationships would also
serve as the basis for the translation of the anti-nociceptive
effects across species (1). In addition, the use of PKPDmodel-
ling offers an opportunity to better understand the in vivo time
course of pharmacological effects, providing further insight
into the mechanisms of action (13,14). Nonetheless, these
concepts have been underutilised in pre-clinical pain research
(15). This may be explained, at least partly, by the lack of
pharmacokinetic information and the absence of the time
course of treatment response (1).

The primary goal of this study was therefore to develop a
semi-mechanistic model that allows the characterisation of the
time course of formalin-induced pain and assess the effects of
gabapentin on flinching behaviour. Above and beyond the
known experimental issues, such as high variability in response,
here we show that the main challenge for the characterisation

of PKPD relationships using experimental behavioural pain
models are the lack of suitable protocol designs, in which
pharmacokinetic data and the time course of response are
carefully considered. Lastly, we explore the relevance of pa-
rameter estimates by comparing our findings with published
data from other experimental models of pain as well as with
clinical data in neuropathic pain patients.

MATERIALS AND METHODS

Experimental Design

Protocols and experimental procedures were reviewed and
approved by the Home Office, UK, as required per project
licence. The experiments were performed following approval
by the ethics Committee. Sprague-Dawley rats (Charles River,
UK, weight range 100–300 g) had metal bands attached to
their right hind-paws and were placed in Perspex recording
chambers and allowed to habituate for 15 min before admin-
istration of formalin. The animals were then injected with 50 μl
of formalin, subcutaneously in the ventral surface of the right
hind-paw at a 2.5% conc/vol. Following formalin administra-
tion, animals were returned to the Perspex recording chambers
and the number of flinches was counted by the automatic teller
for 1 h. Four rats could be tested in parallel using this system.
All animals were euthanised at the end of the experiment.

Vehicle or gabapentin was administered orally at doses of 0,
10, 30, 100 mg/kg approximately 1 h prior to formalin injec-
tion. The interval between drug administration and formalin
injection is standard practice in the evaluation of analgesic
drugs in this experimental model. It accounts for the time
required for drug absorption and the short-lasting response to
formalin (12). Data from five different experiments were pooled
together, making a total of 96 animals. All experiments includ-
ed a placebo or vehicle treatment arm, with eight animals per
dose level. In four experiments only one active dose was tested
(100 mg/kg), whilst the fifth experiment included two addition-
al active doses levels of 10 and 30 mg/kg gabapentin.

Pharmacodynamic Measurements

The total frequency of flinches was recorded at 5-min inter-
vals, from 5 to 60 min after formalin injection.

Data Analysis

Pharmacokinetic Simulations

Gabapentin concentrations were simulated using a model pre-
viously published based on a two-compartment drug disposi-
tion and dose-limited absorption (16). The model was built in a
stepwise manner. First, intravenous data were modelled to
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obtain accurate estimates of disposition parameters, namely
clearance and volume of distribution. As gabapentin has poor
solubility, nonlinear bioavailability is observed with increasing
doses (17), absorption parameters (i.e., bioavailability and input
rate) estimates were obtained separately from the fitting of a
second experiment in which gabapentin was administered oral-
ly. Further diagnostics and validation procedures are described
in Taneja et al. (16). Simulated gabapentin concentrations were
derived by the following expression.

C ¼ K aFD

V 1

k21−λ1ð Þe−λ1 t
ka−λ1ð Þ λ2−λ1ð Þ þ

k21−λ2ð Þe−λ2 t
ka−λ2ð Þ λ1−λ2ð Þ þ

k21−K að Þe−K at

λ1−kað Þ λ2−kað Þ
� �

ð1Þ

where ka = absorption rate constant, V1 = central volume of
distribution, F = bioavailability of the administered dose, λ1
and λ 2 correspond to the initial and terminal slopes
representing bi-exponential decline, respectively and k21 =
micro-rate constant describing the transfer between compart-
ments 1 and 2. A summary of the pharmacokinetic model
parameters is shown in Table I. Details of the analytical solu-
tion to the two-compartment model, which was implemented
in NONMEM for the simulations, and the derivation of the
macro and micro rate constants from the primary pharmaco-
kinetic parameters (i.e., volume and clearance) are described in
the appendix (see Supplementary Material).

Exploratory Data Analysis

Before starting model building, we performed a graphical
evaluation of the experimental data, including plots of the
time course of gabapentin in plasma, the effect vs. time and
the concentration vs. effect relationships. To ensure suitable
model parameterisation and assess the existence of correla-
tions in the data, pain response at any given point in time was
also plotted against the values observed in the preceding
interval. Such correlations are of relevance for modelling
purposes, as highly correlated data may lead to model

misspecification. In general, pain response (i.e., flinching fre-
quency in our case) at a given sampling time has been shown to
correlate with preceding measurements (18,19).

Given that the frequency of flinches/time interval was >10,
we decided to model the counts as continuous data.

PKPD Model Parameterisation

Disease Model . In the FIP model, there is a temporal delay
between the appearance of gabapentin concentrations in
plasma and the onset of the formalin-induced pain response.
Depending on the half-life of the compound, the analgesic is
administered before the induction of hyperalgesia with forma-
lin. Given that two pain peaks consistently occur after admin-
istration of formalin, this phenomenon was parameterised in
terms of two independent pharmacodynamic (PD) compart-
ments. The first peak (i.e., pain associated with the first phase)
was described by the following exponential decay relationship:

dFO

dt
¼ −kdf � FO

PAIN 1 ¼ F 3 � FO
ð2Þ

where FO = formalin-induced stimulus, k df = dissipation
constant for formalin, F3 = basal pain load in the first PD
compartment, PAIN1 = total pain in the first PD compartment

The first peak of pain occurs almost instantaneously after
algogen administration, thus the parameter F3 reflects pain at
baseline, which wanes spontaneously soon thereafter.

The onset of the second peak of pain is after a quiescent
phase and is considered to reflect the central hypersensitisation,
which ultimately manifests itself as a second, more prolonged
phase of flinching. Similarly to the first peak, pain intensity
increases to a maximum and then remits spontaneously. Given
the lack of a direct correlation between the gabapentin concen-
trations in plasma and the time course of this response over
time, an indirect model was deemed to be most appropriate to
describe the phenomenon (20). In an indirect model the mea-
sured response (R ) is assumed to result from factors controlling
either the input or the disappearance of the response. The
general expression to describe these models is given by the
expression below:

dR

dt
¼ ksyn−kdeg � R ð3Þ

where dR/dt is the rate of change in the response over time,
k syn represents the zero-order rate constant for the formation
of the response and kdeg the first-order rate constant for loss of
the response. We have replaced the response R in Eq. 3 with
the term FL to make explicit reference to the time course of

Table I Pharmacokinetic Parameter Estimates Used in the Simulations of
Gabapentin Concentrations at the Time of Measurement of the Flinching
Response

Pharmacokinetic parameter Values

Central volume (V1) 0.118 (l)

Peripheral volume (V2) 0.253 (l)

Clearance (Cl) 0.159 (l/h)

Intercompartmental clearance(Q) 1.22 (l/h)

Bioavailability (F) 1,0.75,0.22a

Absorption rate constant (ka) 0.26 (h−1)

a For doses 10, 30,100 mg/kg respectively

Modelling of the Analgesic Effect of Gabapentin in Rats 595



the flinching response triggered by the central sensitisation in
the spinal cord following the first peak.

dFL

dt
¼ ksyn−kdeg � FL ð4Þ

Given that the pain response wanes with time i.e., there is
spontaneous recovery within 1 h after injection of the algogen
(2,6), k syn was treated as time-dependent variable and
parameterised in conjunction with a lag time (Tlag ).
Depending on whether t, the time after formalin injection,
was larger or smaller than Tlag (i.e., the delay between the
occurrence of the first and second peaks of pain), different
estimates were considered for k syn. Thus for t ≥Tlag , model
parameterisation described the onset of the second phase of
pain. If t<Tlag, k syn=0, which meant the second phase of pain
had not yet begun. A modified gamma function was required
to describe the time course of k syn and Eq. 4 was thus
transformed to an expression representing the natural change
in pain frequency, as follows:

ksyn ¼ A � α t−Tlagð Þ
� �

� e −β t−Tlagð Þð Þ ð5Þ

where A (response unit h−2), α (a dimensionless constant), ß
(h−1) are the parameters of the gamma function describing the
time course and intensity of the second phase of pain as
assessed by the frequency of flinching.

As mentioned earlier, the time course of the disease is a result
of the temporal change in the frequency of flinching represented
by FL . At the start of the study, i.e., before onset of the second
peak, the frequency of flinching was assumed to be 0. Conse-
quently, the generic Eq. 4 can finally be rewritten in terms of FL
as follows:

dFL

dt
¼ A � α t−Tlagð Þ

� �
� e −β t−Tlagð Þð Þ−kdeg � FL ð6Þ

Drug Model. The model used to describe the pharma-
cological effects of gabapentin was applied to simulta-
neously fit both placebo and active treatment data. It
has been observed that gabapentin decreases the fre-
quency of flinches, which results in a response profile
superimposed on the natural disease process. Gabapentin
effects (DEFF) were best described by an inhibitory Imax
function, which represents the reversible counteracting effects
of gabapentin on the algogenic action of FL, i.e., the observed
flinching behaviour:

DEFF ¼ 1−
Imax � Cp

IC50 þ Cp

� �
ð7Þ

where Imax =maximum possible inhibition of pain, Cp = drug
concentrations in plasma and IC50 = plasma concentration at

which 50% of the maximum inhibition occurs. As gabapentin
only affects the second peak of pain, we have assumed that
gabapentin effects reflect a decrease in central sensitisation.
We have assumed the Imax to be 1, i.e., the maximum possible
inhibition of pain. This assumption is relevant from a drug
development perspective, which implies complete pain sup-
pression for truly effective treatments. In practice, however,
one should acknowledge that current drugs do not appear to
be completely efficacious. In addition, evoked pain in exper-
imental models lead to different levels of hypersensitisation,
which may result in varying peak intensities across different
subjects (21).

From a modelling perspective, it should be noted that
indirect response models incorporate the Hill function directly
in the turnover differential equation whereas we have chosen
to parameterise the gabapentin effect (DEFF ) directly on the
pain variable of the second peak, rather than within the
differential equation. This is because gabapentin does not
alter the onset of the pain nor its eventual disappearance,
but reversibly alters its peak intensity. In other words, the
analgesic effect of gabapentin is a covariate on the behaviour
or flinching response. A similar approach has been used
previously to describe the effects of lumiracoxib on COX-2
inhibition (22). The net pain observed is therefore the product
of the gabapentin effect (DEFF) and FL . This effect has been
parameterised into the second PD compartment (PAIN2):

PAIN 2 ¼ 1−
Imax � Cp

IC50 þ Cp

� �
� FL ð8Þ

The total pain (PAIN ) was described by the sum of the pain
in the two PD compartments:

PAIN ¼ PAIN 1þ PAIN 2 ð9Þ

A schematic representation of this mechanistic PDmodel is
presented in Fig. 1. Interindividual variability was modelled
exponentially and applied serially to each parameter. Stochas-
tic parameters were retained in all cases in which significant
improvements were observed to the fitting, as defined by
statistical criteria described below. Residual variability was
best described by an additive error model.

Model Diagnostics and Evaluation

Model selection was based on the visual examination of the
goodness-of-fit plots using Xpose version 4.2.1 (23). The pre-
cision of model parameter estimates is represented by the
coefficient of variation [CV (%)], computed as the ratio be-
tween the standard error provided by NONMEM and the
parameter estimate multiplied by 100, and the MOFV pro-
vided by NONMEM. The difference in the MOFV between
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two hierarchical models was considered statistically significant
if the MOFV changed by at least 6.63 points which is equiv-
alent to a p value of <0.01 for a χ2 distribution. The final
model was further evaluated based on visual and numerical
predictive checks and bootstrap procedures (24,25). Using the
final model, the 2.5th, 50th, and 97.5th percentiles from simu-
lated pain response (n=500) were calculated and compared to
the experimental data. NONMEM7.1.2 was used in conjunc-
tion with PsN 3.2.12 for all estimation and simulation proce-
dures. Modelling was based on the first-order conditional
estimation method with the INTERACTION option (26).
The statistical software R (v 2.10) was used for data manipu-
lation, statistical and graphical summaries (27).

Lastly, a nonparametric bootstrap with re-sampling
was performed to estimate the confidence intervals of
the parameters (25). This technique consisted of repeat-
edly fitting the model to replicates of the data set using
the bootstrap option in PsN 3.2.12. Parameter estimates
for each of the replicate data sets were obtained. The
results of successful runs from 500 bootstraps were then
pooled together, and the median and 2.5th and 97.5th

percentiles (denoting the 95% confidence interval) determined
for each parameter.

RESULTS

Pharmacokinetic Simulations

The population mean concentration vs. time profiles for the
three active doses of gabapentin are depicted in Fig. 2 (left
panel). As indicated previously, drug concentrations increase
less than proportionally with increasing doses due to the dose-
limited bioavailability of gabapentin.

Exploratory Analysis

The time course of the flinching behaviour, summarised as
means for each dose level is shown in Fig. 2 (right panel),
together with the corresponding pharmacokinetic profiles. It
can be appreciated here that gabapentin only reduces the
amplitude of the second peak. Furthermore, the amplitude
of the second peak decreases with increasing doses of
gabapentin, highlighting a dose-dependent effect on flinching
frequency.

Despite a dose-dependent effect on flinching frequency,
Fig. 3 shows that there is a disconnection between the
median behavioural response and population gabapentin

Fig. 1 Schematic diagram of the pharmacokinetic-pharmacodynamic model. PK compartments are displayed with dashed horizontal (blue) hatching, while PD
compartments’ are dark shaded (grey or black ).
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concentrations. From these plots, it is clear that during the
experimental protocol, the pain response (i.e., flinching
frequency) begins soon after formalin injection and wanes
while gabapentin is still predominantly in the absorption
phase. Considerable variability in the response can also be
seen between animals.

In Fig. 4, the flinching frequency is depicted against time and
gabapentin concentrations, stratified by dose level. From the
two panels it can be seen that the concentration-effect relation-
ship can be superimposed on the time course of response itself.
The data suggests that gabapentin effects have limited impact
on the time course of the second pain peak. Moreover, this
phenomenon is further confounded by high degree of correla-
tion between consecutive measurements. Details are shown in
the appendix (see Supplementary Material, Fig. S1).

PKPD Modelling

The time course of the flinching behaviour as well as the
inhibitory effects observed after administration of gabapentin
were accurately characterised by the indirect response model.
The structural model described all three components of the
pain response to formalin, namely the two peaks and the
intervening quiescent phase between the peaks. The

goodness-of-fit plots are presented in Fig. 5. All structural
model parameters were identifiable for the current dataset,
as evidenced from the RSEs (<40%) shown in Table II.

As can be seen from Figs. 3 and 4, there was considerable
variability in the observed flinching frequency between differ-
ent animals. IIV was modelled exponentially and tested seri-
ally on all model parameters. The data supported the inclu-
sion of IIV on the F3 parameter of the first peak, ß , and kdeg on
the second peak, resulting in significant drops in the objective
function value i.e., yielding statistically significant improve-
ments in the model (p<0.01).

Model Evaluation

To evaluate model performance, the visual predictive checks
were stratified by dose level. As can be seen in Fig. 6, the
model is able to describe both the median trends in the data as
well as the distribution i.e., the interquartile ranges. Since
there was more data available for the placebo and 100 mg/
kg dose, the predictions for these dose levels are comparatively
better than for the remaining dose levels. Approximately, less
than 5% of the observations fall outside the prediction inter-
vals. Themodel predicted response for the second peak occurs
slightly earlier than that of the real data, which may be due to

Fig. 2 Population curves for gabapentin concentrations in the plasma for doses 10, 30, 100 mg/kg (left panel ) and the flinching behaviour in the formalin-induced
model following placebo (dot-dashed ), 10 (solid ), 30 (dashed ) and 100 (dash-dash) mg/kg curves (right panel ).
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a slight underestimation of the lag time (Tlag). The numerical
predictive checks are depicted in Table III, where the median
number of flinching counts for observed and simulated (95%

CI) data is shown at four different points, with the objective of
characterising the maximum and minimum values of the two
pain phases. In general, predictions for the placebo and
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Fig. 4 Flinching frequency (expressed as counts/5 min) versus time and gabapentin concentration, stratified by dose level. The shaded area represents the 5th
and 95th percentiles of the observed data.
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Fig. 3 Lack of correlation between
the onset of response (right panel )
and the time course of
concentrations in plasma following a
typical dose of 100 mg/kg
gabapentin (left panel ). Dots
represent the individual observed
flinching response expressed as
counts/5 min; the solid line depicts
the median response profile of the
population in the study.
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100 mg/kg doses are better as compared to the other two,
except in the case of the trough response for the second peak,
where the model apparently seems to overpredict the frequen-
cy of counts, while underpredicting gabapentin effects, for the
top dose as compared to the other dose levels. Such a discrep-
ancy may be due to the effects of nonlinear bioavailability,
which is not fully captured by imputed (simulated)

concentrations. In fact, from Table III it can be seen that
the predicted median maximal flinching frequency for the
100 mg/kg dose is less than the corresponding prediction for
the 30 mg/kg dose and that the 95% CIs of the medians
overlap with each other. This is a consequence of the actual
concentrations of gabapentin driving the response, which did
not differ widely across the dose levels.

(h)

Fig. 5 Goodness-of-fit Plots. The
upper panels show the correlation
between observed and population
(left) or individual (right) predicted
response. In the lower panels, the
observed and predicted responses
are depicted over time.

Table II Parameter Estimates from the Final Population PKPD Model, Including Bootstrap Estimates and 95% Confidence Intervals

Final PD Model Bootstrap Estimates

Parameter IIV

Parameter Estimate (CV%) IIV (CV%) Shrinkage Median 5%–95% CI Median 5%–95% CI

kdf - constant for the dissipation of formalin effect (h−1) 12.3 (5.3) 249.3 12.33, 1169.25

F3 - basal response in the 1st PD compartment (counts) 126 (4.3) 57.4 (21.8) 16.7 132.0 122.32, 139.63 0.15 0.1, 34.6

Tlag – delay between the first and second peaksa (h) 0.3 (0.2) 0.24 0.0, 0.30

A - parameter of gamma function (h−1) 2720 (6.6) 66.3 (17.0) 14.0 2275.8 1099.1, 2943.1 39.0 27.5, 46.8

α – dimensionless gamma function parameter 2.29 (239) 24.8 1.3, 159.0

β – parameter of gamma function (h−1) 8.3 (30.8) 67.0 (78.0) 15.0 9.3 5.4, 12.1 25 7.2, 44.8

kdeg – degradation constant describing the waning of Pain2 (h
−1) 5.9 (4.2) 5.3 2.9, 6.3

IC50 – gabapentin potency (ng/ml) 7510 (40.3) 6380.5 3961, 15390

Residual error (additive) 29.1 (7.8) 9.4 35.3 33.0, 43.7

IIV is presented as a percentage
a Tlag is relative to the formalin injection
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The final model parameter estimates along with the results
from the bootstrap for 500 runs (median, 5 and 95% CI) is
summarised in Table II. Most model parameters were well
estimated, with the exception of kdf , α , and Tlag as can be
seen from the wide confidence intervals in the bootstrap. Sim-
ilarly, the parameters describing IIV were not well estimated in
the bootstrap. We experienced a high minimisation failure rate
in the bootstrap (~70%), which has caused a possible underes-
timation of IIV during bootstrapping. Therefore, all final IIV
estimates are based on objective function criteria used during
the initial fitting procedures. We do not consider these findings
as a indication of model overparameterisation. Rather this
suggests that not all parameters may be easily identifiable in

subsets of the original dataset. The impact of poor precision was
assessed by sensitivity analysis, which showed the variation in
these parameters did not have significant effects on the overall
model fit. Lastly, a few individual fits are depicted in Fig. 7
together with the observed data to illustrate model perfor-
mance at the individual level.

DISCUSSION

Despite its wide use in the screening of compounds for neu-
ropathic pain, till recently no attempts had been made to
characterise PKPD relationships in the FIP model, with the
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Fig. 6 Visual Predictive Check for
the final PKPD model stratified by
dose. The results are based on
500 replicates. Filled Circles are the
raw data; the red and black lines
denote the median of the observed
and simulated data while the
corresponding dashed lines
represent the 2.5th and 97.5th
percentile of the observed and
simulated data respectively.

Table III Numeric Predictive Checks - Comparison Between Observed and Predicted Maximum and Trough Responses with Corresponding 95% Prediction
Intervals Stratified by Dose

Dose
(mg/kg)

Peak 1, Max PD
(5 min after formalin injection)

Peak 1, Trough PD
(10 min after formalin injection)

Peak 2, Max PD
(30 min after formalin injection)

Peak 2, Trough PD
(60 min after formalin)

Median Real
data

Median Sim
(95% CI)

Median Real
data

Median Sim
(95% CI)

Median Real
data

Median Sim
(95% CI)

Median Real
data

Median Sim
(95% CI)

0 123.1 128.1 (109.5–148.5) 22.1 16.4 (5.6–27.8) 157.4 137.8 (107.4–173.7) 19.1 23.4 (9.9–38.7)

10 159.6 126.9 (90.4–170.0) 48.0 14.9 (0.3–39.6) 157.0 121.0 (71.3–192.0) 9.7 21.6 (1.0–51.4)

30 169.1 130.0 (91.6–174.9) 8.1 18.5 (0.4–43.2) 171.5 87.9 (44.1–143.0) 19.7 19.6 (0.4–49.4)

100 126.5 128.5 (110.6–150.0) 17.5 16.2 (5.4–27.8) 75.0 102.0 (80.0–127.3) 4.4 17.7 (5.1–32.3)
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exception of the recent work of Velez de Mendizabal et al. on
lumiracoxib (22). Even though both investigations were based
on FIP model, their approach is based on the use of a KPD
(kinetic-pharmacodynamic) model to describe the effects of
lumiracoxib. Their model shows that pain response during the
second phase of the formalin-induced response can be de-
scribed by incorporating synthesis and degradation of pain
mediators that were recruited locally after tissue injury. Given
the well-established role of COX-2, upregulation was corre-
lated to predicted levels of pain mediators in the local (injured)
compartment.

By contrast, the semi-mechanistic approach proposed here
was aimed at the prospective use of PKPD models for drug
screening. The model describes the time course of the disease
(i.e., flinching frequency) and pharmacological effects (i.e.,
gabapentin) in an independent manner. In this context,
gabapentin can be considered a paradigm compound. In
addition, our choice of parameterisation took into account
the possibility and importance of generating evidence of
PKPDproperties that can be easily used to translate treatment
effects across species. Therefore, model parameterisation has
not relied on typical measures such as cumulative response,
which despite being technically less demanding has important
drawbacks. For instance, if data were to be modelled using
cumulative flinching counts, gabapentin potency would be
expressed in terms of the time required to halve the maximum
response. Such a parameter would have little physiological
meaning even though many consider it suitable for ranking of

compounds. Moreover, the use of such cumulative measures
of response would not warrant a unique PKPD relationship
(see Fig. 4). It became clear during our exploratory analysis
that the flinching behaviour induced by formalin produces a
unique fingerprint which prevails over any attempt to char-
acterise the underlying exposure-response relationship using
direct response models (28).

From a pathophysiological perspective, our efforts to
parameterise the behavioural response enabled distinction be-
tween the first peak, i.e., peripheral sensitisation and the second
peak, which appears to reflect central hypersensitisation. Fur-
thermore, our approach clearly shows that it is possible to
explore drug and disease properties using independent param-
eters. The drug-sensitive phase was therefore parameterised in
terms of an indirect response model, which describes the
changes in flinching behaviour in terms of the difference be-
tween a time-dependent synthesis and a constant degradation
rate. The same phenomenon appears to occur in other species
such as mice, gerbils, cats, monkeys (6), suggesting the oppor-
tunity for wide use of the concepts presented here. The for-
mation rate of such a response (k syn) was further characterised
by a gamma function, which indicates the time varying course
of formalin-induced symptoms, and consequently modifying
the classical indirect response model of Dayaneka et al. (20).
This function has been previously described for endpoints
where spontaneous recovery from inflammation can be
expected (14). Historically, negative power functions of time
have been applied to describe clearance curves in PK studies

Fig. 7 Example of randomly
selected observed individual profiles
(shaded circles) with the
corresponding individual (IPRED,
solid line) and population predicted
(PRED, dotted line) response.

602 Taneja et al.



and tracer kinetics in general, with a view to replacing
multicompartmental analysis. Though non-physiological,
they require considerably fewer parameters and yielded more
accurate predictions (29). We have modified the traditional
gamma function by parameterising the variable t-Tlag as the
exponent of the dimensionless constant α . This led to better
fits and lesser numerical difficulties with the minimisation
routine. The time to onset of the second peak was about
20min in our analysis which is in agreement with the observed
data and also literature estimates of 10–20 min post-formalin
injection (2). However, there was considerable variability in
this parameter as can be seen from the median effect vs . time
curves in Fig. 2. As indicated in the “Materials and Methods”
section, we should mention that the assumption of a maxi-
mum drug response (Imax), with a theoretical value of 1 (i.e.,
return to a baseline state) allowed us to explore the concept of
efficacy in a systematic manner. Fixing of the parameter to a
single maximum value was applied even though the disease
process and treatment response was not expected to be same
in all subjects. The approach has been previously applied by
Maas et al. to describe migraine pain (19).

Focus should also be given to the observed high between-
subject variability in the FIPmodel, a phenomenon that is well
known in clinical pain conditions (30,31). Although most
investigations consider such variability a purely stochastic
process which cannot be assigned to any specific source or
mechanism, we have tried to estimate between-subject vari-
ability for all relevant model parameters, such as Imax or IC50.
Unfortunately, this was not supported by the data. Yet, it is
reasonable to assume that individual differences in gabapentin
potency do exist and occur due to the time varying effects of
formalin, which can affect both maximum frequency of
flinching behaviour as well as modulate gabapentin effects
on central hypersensitisation. On the other hand, IIV could
be identified for parameters associated with the induction of
formalin-induced pain. The basal load of pain (F3) dif-
fered among subjects and an η on this parameter im-
proved the fit. The waning of the pain phenomenon (kdeg)
was also found to differ among individuals and fitting
showed significant improvements when IIV was applied.
The diagnostic plots, such as the visual predictive checks
show the model has adequate predictive performance.
Ideally in such circumstances, the next step would be to
fit the model to external datasets. Regretfully, we have not
been able to identify such data.

Limitations

We should emphasise that the choice of parameterisation was
based on turnover phenomena, rather than on disease states.
In contrast to standard data-driven approaches in which var-
iable states or grades of severity are parameterised as states in

Markov-chain (32), we have chosen to handle the time course
of flinching behaviour as a non-linear turnover process.

The identification of one or more states in such a fast
waning process makes the estimation of transition probabili-
ties in a hierarchical model rather challenging. In addition,
flinching frequency data do not seem to support the concept of
interchangeability in the transition between states, which is a
desirable property of Markov processes. Interesting applica-
tions of hidden Markov models describing headache response
after treatment with sumatriptan have been shown by
Anisimov et al. and Maas et al. (19,33). Another example is
the work published by Kjelsson et al. , where the authors
describe how a Markov model can be used to describe sleep
architecture (18). In either case, transition probabilities were
used as basis for the evaluation of drug effects.

Another important point to consider is that complex path-
ophysiological processes underlie the generation of second
peak, such as the release of various excitatory neurotransmit-
ters acting through NMDA and NK1 receptors which then
initiate a cascade leading to central sensitisation (34). We have
parameterised these processes collectively as FL , under the
assumption that differences in the individual time course of
neurotransmitters was not statistically different. This choice
was made to ensure description of the observed phenomenon
rather than the pathophysiology of the pain response.

A potential drawback in our approach is that the IC50

estimates appear to be beyond the range of observed
gabapentin concentrations. This situation is a consequence
of the use of a theoretical maximum (Imax), which cannot be
reached by gabapentin. Had this been the case, the second
peak would have been suppressed completely. On the other
hand, it is well documented that gabapentin produces partial
symptomatic relief in neuropathic pain, rather than showing
any disease modifying effects. It is therefore plausible to infer
that incomplete suppression of the second peak reflects actual
clinical effects of gabapentin (35,36). Yet, we consider the
ability to discriminate between compounds that cause total
pain suppression and partial relief highly desirable and do not
anticipate any bias in the way compounds can be ranked on
the basis of their potencies. In a situation where Cp<<IC50,
the DEFF in Eq. 7 would reduce to:

DEFF ¼ 1−
1

IC50

� �
ð10Þ

In this case, it can be argued that the IC50 would then be a
linear coefficient rather than a true measure of potency and
consequently yield a less robust estimate of the gabapentin
effects. By contrast, under the assumption of a theoretical
maximum response (Imax) being reached by an efficacious
analgesic drug, the IC50 becomes a relative parameter, con-
ditioned on Imax values. In these circumstances, IC50 estimates
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can be reasonably used to compare compounds with each
other as well as rank them according to differences in potency.

The identifiability of model parameters also deserves fur-
ther discussion. We have not been able to identify all param-
eters with comparable precision, as can be seen from the
results of the bootstrap procedures. This suggests the need
for more frequent sampling schemes and larger datasets to
fully characterise all model parameters. These findings are not
necessarily a limitation. In fact, existing data may be used
prospectively in future experimental protocols, in which the
new data are used only to estimate compound-specific param-
eters and existing data continue to support the estimation of
system-specific parameters. There are many recent examples
in the published literature where this strategy has been
employed. For the sake of conciseness, we refer the reader to
these publications (37–39).

Finally, we acknowledge that the gamma function may
have little physiologic basis, and future improvements to the
model could be aimed at replacing this function with a more
physiologic alternative. Such an alternative parameterisation
may however require the availability of rich datasets. We
anticipate that historical data may be used in combination
with newly generated experimental data, so that only drug-
specific parameters need to be estimated.

From a drug development perspective, we take the oppor-
tunity to highlight a few shortcomings of the experimental
protocol design, which was performed according to standard
experimental procedures. The time of dosing of gabapentin
should have been planned taking into consideration differ-
ences in pharmacokinetic properties of the compounds under
investigation. If gabapentin had been administered earlier, the
return to baseline of the flinching events might have coincided
with the elimination phase of gabapentin. Secondly, no base-
line behaviour was recorded i.e., flinching counts between the
administration of gabapentin and the injection of formalin
(T=0). As explained previously, pain burden at baseline also
showed differences between animals (i.e., interindividual
variability on F3 ).

Comparison with Other Pre-clinical and Clinical
Findings

We have attempted to compare our results with other pub-
lished pre-clinical and clinical data on gabapentin. Vastly
different concentration levels have been reported in published
preclinical gabapentin studies. These range from concentra-
tions >5 μg/ml for oral doses ≥25 mg/kg (17) to values above
20 μg/ml at 2 h for oral dose of 30 mg/kg (40). These findings
contrast with the simulated profiles that show gabapentin
levels of approximately 2.5 μg/ml. These differences may
result from high variability in absorption, which is mediated
by active transporters (17). Furthermore, differences in drug
metabolism may arise from wide range of body weights used

in different publications. We also found differences in the
relative bioavailability for the dose of 100 mg/kg. Our results
suggest values of 22%, whilst Cundy et al. suggests bioavail-
ability of approximately 50%. As described in the appendix,
the pharmacokinetic model used for the simulations was based
on oral data obtained by sparse sampling. The potential
impact of sparse sampling on the estimates of bioavailability
cannot be excluded. Further efforts are required to develop a
more robust pharmacokinetic model for oral gabapentin using
frequent sampling. However, one should remember that poor
solubility and differences in the choice of solvents is also
known to affect overall bioavailability.

Table S1 (see Supplementary Material) gives an overview
of the IC50 and ID50 values reported for different pain
models. Except for one pre-clinical experiment and one clin-
ical study no other publications have applied modelling to
analyse or interpret the data (41,42). Most authors used ID50s
and minimum effective doses (MED) as measures of potency
with no mention of concentrations, rendering direct compar-
isons rather difficult, if not impossible (12,43–46). Noteworthy
is the wide variability observed in the findings by different
authors. There were other important differences such as the
ceiling effect being observed by Iyengar et al. at a relatively low
dose of 50 mg/kg, while others reported peak effects between
100–300 mg/kg (44,47). Among those studies where direct
comparison with our work was possible, Todorovic reported
an IC50 of 467 nM as compared to 43 nM reported here (41).
More consistent results for clinical IC50s were reported by
Lockwood et al. (31.28 nM), whilst Whiteside et al. provide
estimates for clinical MED values of 69.72 nM (42,48,49).
Notably, Whiteside’s work is the only effort at inter-species
correlations amongst the publications we have reviewed, al-
beit not based on modelling concepts.

CONCLUSIONS

In summary, differences in analgesic potency exist in
pre-clinical models, which cannot be interpreted simply
in terms of precision. A comprehensive evaluation is
missing of the differences and similarities in the under-
lying mechanisms affected by evoked pain in the various
models currently available for pre-clinical evaluation of
neuropathic pain.

Clearly, the challenges for the identification of suit-
able compounds for the treatment of neuropathic pain
will not be overcome until adequate biomarkers of pharma-
cology are identified (50,51). Yet, irrespective of differences
in pathophysiology, approaches are required that facili-
tate the translation of pre-clinical findings and provide
the basis for the characterisation of drug-specific properties.
A parametric, model-based approach is essential to ensure
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distinction between disease processes and pharmacological
effects.
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